Symmetries in Motion : Geometric Foundations of Motion

نویسندگان

  • Jerrold E. Marsden
  • Jim Ostrowski
چکیده

Some interesting aspects of motion and control for systems such as those found in biological and robotic locomotion, attitude control of spacecraft and underwater vehicles, and steering of cars and trailers, involve geometric concepts. When an animal or a robot moves its joints in a periodic fashion, it can move forward or rotate in place. When the amplitude of the motion increases, the resulting net displacements normally increase as well. These observations lead to the general idea that when certain variables in a system move in a periodic fashion, motion of the whole object can result. This property can be used for control purposes; the position and attitude of a satellite, for example, are often controlled by periodic motions of parts of the satellite, such as spinning rotors. Geometric tools that have been useful to describe this phenomenon are \connections", mathematical objects that are extensively used in general relativity and other parts of theoretical physics. The theory of connections, which is now part of the general subject of geometric mechanics, has also been helpful in the study of the stability or instability of a system and in its bifurcations under parameter variations. This approach, currently in a period of rapid evolution, has been used, for example, to design stabilizing feedback control systems in the attitude dynamics of spacecraft and underwater vehicles. The same theory also describes the behavior of systems with constraints, such as those found in a simple, non-slipping rolling wheel or for more complex systems like a car pulling many trailers or a snake sliding across a oor. The presence of symmetries in these systems, often exhibited as position and orientation invariance, leads to a general theory of reduction. In this theory, the salient features of the motion are highlighted in a manner that is also conducive to formulating control inputs. This article explains in a reasonably nontechnical way why some of these tools of geometric mechanics are useful in the study of motion control and locomotion generation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions for Fokker-Plank equation of geometric Brownian motion with Lie point symmetries

‎In this paper Lie symmetry analysis is applied to find new‎ solution for Fokker Plank equation of geometric Brownian motion‎. This analysis classifies the solution format of the Fokker Plank‎ ‎equation‎.

متن کامل

The Symmetries of Equivalent Lagrangian Systems and Constants of Motion

In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to th...

متن کامل

Symmetries in Motion: Geometric Foundations of Motion Control

Some interesting aspects of motion and control for systems such as those found in biological and robotic locomotion, attitude control of spacecraft and underwater vehicles, and steering of cars and trailers, involve geometric concepts. When an animal or a robot moves its joints in a periodic fashion, it can move forward or rotate in place. When the amplitude of the motion increases, the resulti...

متن کامل

Mechanical behaviour of motion for the two-dimensional monolayer system‎

‎In this paper we study the dynamics of the 2D-motion of a particle of monolayer‎. First we consider the usual physical time component and the plan manifold R2, having the polar coordinates. Then a geometric approach to nonholonomic constrained mechanical systems is applied to a problem from the two dimensional geometric dynamics of the Langmuir-Blodgett monolayer‎. We consider a constraint sub...

متن کامل

A Discrete Geometric Optimal Control Framework for Systemts with Symmetries

This paper studies the optimal motion control of mechanical systems through a discrete geometric approach. At the core of our formulation is a discrete Lagrange-d’AlembertPontryagin variational principle, from which are derived discrete equations of motion that serve as constraints in our optimization framework. We apply this discrete mechanical approach to holonomic systems with symmetries and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998